Перевод: с русского на английский

с английского на русский

интерфейс объекта

  • 1 интерфейс объекта

    Programming: object interface (а) в ООП - типы сообщений, которые объект может принимать; б) набор свойств и функций, предоставляемых объектом), object’s interface

    Универсальный русско-английский словарь > интерфейс объекта

  • 2 интерфейс объекта

    (набор свойств и функции, предоставляемых объектом) object interface

    Русско-английский словарь по вычислительной технике и программированию > интерфейс объекта

  • 3 интерфейс объекта

    Русско-английский индекс к Англо-русскому толковому словарю терминов и сокращений по ВТ, Интернету и программированию > интерфейс объекта

  • 4 Интерфейс объекта – это набор предоставляемых им операций, описываемый с помощью сигнатур

    Универсальный русско-английский словарь > Интерфейс объекта – это набор предоставляемых им операций, описываемый с помощью сигнатур

  • 5 интерфейс

    1. interface

     

    интерфейс
    Совокупность средств и правил, обеспечивающих взаимодействие устройств вычислительной машины или системы обработки информации и (или) программ.
    [ ГОСТ 15971-90]
    [ ГОСТ Р 50304-92]

    интерфейс
    Граница между двумя взаимодействующими системами (устройствами), определяемая общими функциональными и конструктивными характеристиками, требованиями к протоколам обмена и т.д.
    [Руководящий документ "Основные положения развития Взаимоувязанной сети связи Российской Федерации на перспективу до 2005 года"]

    интерфейс
    Граница между двумя системами, место стыковки, средства сопряжения. Так же называют окно программы, используемое для взаимодействия с пользователем.
    Определенная стандартами граница между взаимодействующими в информационном пространстве объектами
    [http://www.rol.ru/files/dict/internet/#I].
    [ http://www.morepc.ru/dict/]

    интерфейс
    Правила и стандартизованные форматы сообщений, определяющие  взаимодействие друг с другом соседних уровней в одном узле.
    [ Источник]

    Тематики

    EN

    3.1.25 интерфейс (interface): Общая граница между двумя функциональными объектами, требования к которой определяются стандартом.

    Стандарт на интерфейс определяет службы в терминах функциональных характеристик и поведения, наблюдаемого на интерфейсе. Стандарт на интерфейс является договором, документально определяющим взаимные обязательства между пользователем и поставщиком служб, а также гарантирует стабильную документально оформленную четкость выполнения конкретного обязательства.

    Источник: Р 50.1.041-2002: Информационные технологии. Руководство по проектированию профилей среды открытой системы (СОС) организации-пользователя

    30. Интерфейс

    Interface

    Совокупность средств и правил, обеспечивающих взаимодействие устройств вычислительной машины или системы обработки информации и (или) программ

    Источник: ГОСТ 15971-90: Системы обработки информации. Термины и определения оригинал документа

    3.33 интерфейс (interface): абстракция поведения объекта, который состоит из подмножества взаимодействий этого объекта вместе с рядом накладываемых ограничений при их возможном возникновении.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > интерфейс

  • 6 интерфейс для передачи информации от любого объекта сети к любому другому

    Универсальный русско-английский словарь > интерфейс для передачи информации от любого объекта сети к любому другому

  • 7 интерфейс для передачи информации от одного объекта сети к другому

    Универсальный русско-английский словарь > интерфейс для передачи информации от одного объекта сети к другому

  • 8 интерфейс для передачи информации от одного объекта сети ко всем другим

    Универсальный русско-английский словарь > интерфейс для передачи информации от одного объекта сети ко всем другим

  • 9 интерфейс реализации запрашиваемого объекта

    Information technology: implementation-side interface

    Универсальный русско-английский словарь > интерфейс реализации запрашиваемого объекта

  • 10 (ООП) открытый интерфейс

    Универсальный русско-английский словарь > (ООП) открытый интерфейс

  • 11 открытый интерфейс

    Универсальный русско-английский словарь > открытый интерфейс

  • 12 абстрактный интерфейс службы связи

    1. ACSI
    2. abstract communication service interface

     

    абстрактный интерфейс службы связи
    Виртуальный интерфейс с интеллектуальным электронным устройством, предоставляющий логическим устройствам, логическим узлам, данным, атрибутам данных и услугам связи абстрактные методы информационного моделирования независимо от фактически применяемого стека связи и профилей.Примечание. К абстрактным методам информационного моделирования относятся: соединение, доступ к переменным, незатребованная передача данных, услуги по управлению устройством и передаче файлов.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    абстрактный интерфейс услуг связи
    -
    [ ГОСТ Р МЭК 61850-7-2-2009]

    EN

    abstract communication service interface
    virtual interface to an IED providing abstract information modelling methods for logical devices, logical nodes, data, and data attributes, and communication services for example connection, variable access, unsolicited data transfer, device control and file transfer services, independent of the actual communication stack and profiles used
    [IEC 61850-2, ed. 1.0 (2003-08)]

    5 Обзор и основные концепции абстрактного интерфейса услуг связи (ACSI)

    5.1 Общие сведения


    Модели ACSI обеспечивают:

    - спецификацию базовой модели для определения специальных информационных моделей подстанции, рассмотренных в МЭК 61850-7-3 (общие классы данных DATA) и МЭК 61850-7-4 (совместимые классы логических узлов LOGICAL-NODE и совместимые классы данных DATA);

    - спецификацию моделей сервиса информационного обмена.

    Информационные модели и сервисы информационного обмена тесно переплетены. С описательной точки зрения эти два аспекта до некоторой степени разделены (см. фрагмент, показанный на рисунке 1). Общие модели (например, классы логических узлов LOGICAL-NODE и классы данных DATA, включающие их сервисы) применены в МЭК 61850-7-3 и МЭК 61850-7-4 для определения многих специализированных информационных моделей - моделей автоматизации подстанции.

     
    5690  

    Information exchange

    Обмен информацией

    Information models

    Модели информации

    Service models other than in LN and DATA (for example DATA-SET, Reporting, GOOSE)

    Модели сервиса, отличные от тех, что имеются в LN и DATA (например, DATA-SET, Reporting, GOOSE)

    ACSI Information exchange (IEC 61850-7-2)

    Обмен информацией ACSI (МЭК 61850-7-2)

    Compatible LOGICAL-NODE

    Совместимый логический узел

    Compatible DATA

    Совместимые данные

    Specializations

    Специализации

    LOGICAL-NODE

    Логический узел

    DATA Services

    Сервисы DATA

    LN services

    Сервисы LN

    ACSI basic information models (IEC 61850-7-2)

    Базовые информационные модели ACSI (МЭК 61850-7-2)

    Information models (IEC 61850-7-3; IEC 61850-7-4)

    Информационные модели (МЭК 61850-7-3; МЭК 61850-7-4)

    Real device

    Физическое устройство

    Рисунок 1 - Часть концептуальной модели

    5692

    LOGICAL-DEVICE

    Логическое устройство

    DATA

    Данные

    DataAttribute

    Атрибут данных

    LOGICAL-NODE

    Логический узел

    ObjectName

    Имя объекта

    ObjectReference

    Ссылка объекта

    SERVER

    СЕРВЕР

    Name

    Имя

    Примечание 2 - Классы - основные компоновочные блоки, обеспечивающие структуру для моделей устройств автоматизации подстанции. Дополнительные подробности по моделированию и связям между МЭК 61850-7-3, МЭК 61850-7-4 и настоящим стандартом можно найти в МЭК 61850-7-1.

    Примечание 3 - Цифры указывают соответствующие разделы в настоящем стандарте.
     
    Рисунок 2 - Базовая концептуальная модель класса ACSI

    [ ГОСТ Р МЭК 61850-7-2-2009]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > абстрактный интерфейс службы связи

  • 13 входящий интерфейс

    (в технологии Connectable Objects - интерфейс клиента, позволяющий получать уведомления от объекта) incoming interface

    Русско-английский словарь по вычислительной технике и программированию > входящий интерфейс

  • 14 объект точки связи

    (в технологии Connectable Objects - исходящий интерфейс объекта (outgoing interface)) connection point object

    Русско-английский словарь по вычислительной технике и программированию > объект точки связи

  • 15 управление электропитанием

    1. power management

     

    управление электропитанием
    -
    [Интент]


    Управление электропитанием ЦОД

    Автор: Жилкина Наталья
    Опубликовано 23 апреля 2009 года


    Источники бесперебойного питания, функционирующие в ЦОД, составляют важный элемент общей системы его энергообеспечения. Вписываясь в контур управления ЦОД, система мониторинга и управления ИБП становится ядром для реализации эксплуатационных функций.

    Три задачи

    Системы мониторинга, диагностики и управления питанием нагрузки решают три основные задачи: позволяют ИБП выполнять свои функции, оповещать персонал о происходящих с ними событиях и посылать команды для автоматического завершения работы защищаемого устройства.

    Мониторинг параметров ИБП предполагает отображение и протоколирование состояния устройства и всех событий, связанных с его изменением. Диагностика реализуется функциями самотестирования системы. Управляющие же функции предполагают активное вмешательство в логику работы устройства.

    Многие специалисты этого рынка, отмечая важность процедуры мониторинга, считают, что управление должно быть сведено к минимуму. «Функция управления ИБП тоже нужна, но скорее факультативно, — говорит Сергей Ермаков, технический директор компании Inelt и эксперт в области систем Chloride. — Я глубоко убежден, что решения об активном управляющем вмешательстве в работу систем защиты электропитания ответственной нагрузки должен принимать человек, а не автоматизированная система. Завершение работы современных мощных серверов, на которых функционируют ответственные приложения, — это, как правило, весьма длительный процесс. ИБП зачастую не способны обеспечивать необходимое для него время, не говоря уж о времени запуска какого-то сервиса». Функция же мониторинга позволяет предотвратить наступление нежелательного события — либо, если таковое произошло, проанализировать его причины, опираясь не на слова, а на запротоколированные данные, хранящиеся в памяти адаптера или файлах на рабочей станции мониторинга.

    Эту точку зрения поддерживает и Алексей Сарыгин, технический директор компании Radius Group: «Дистанционное управление мощных ИБП — это вопрос, к которому надо подходить чрезвычайно аккуратно. Если функции дистанционного мониторинга и диспетчеризации необходимы, то практика предоставления доступа персоналу к функциям дистанционного управления представляется радикально неверной. Доступность модулей управления извне потенциально несет в себе риск нарушения безопасности и категорически снижает надежность системы. Если существует физическая возможность дистанционно воздействовать на ИБП, на его параметры, отключение, снятие нагрузки, закрытие выходных тиристорных ключей или блокирование цепи байпаса, то это чревато потерей питания всего ЦОД».

    Практически на всех трехфазных ИБП предусмотрена кнопка E.P.O. (Emergency Power Off), дублер которой может быть выведен на пульт управления диспетчерской. Она обеспечивает аварийное дистанционное отключение блоков ИБП при наступлении аварийных событий. Это, пожалуй, единственная возможность обесточить нагрузку, питаемую от трехфазного аппарата, но реализуется она в исключительных случаях.

    Что же касается диагностики электропитания, то, как отмечает Юрий Копылов, технический директор московского офиса корпорации Eaton, в последнее время характерной тенденцией в управляющем программном обеспечении стал отказ от предоставления функций удаленного тестирования батарей даже системному администратору.

    — Адекватно сравнивать состояние батарей необходимо под нагрузкой, — говорит он, — сам тест запускать не чаще чем раз в два дня, а разряжать батареи надо при одном и том же токе и уровне нагрузки. К тому же процесс заряда — довольно долгий. Все это не идет батареям на пользу.

    Средства мониторинга

    Производители ИБП предоставляют, как правило, сразу несколько средств мониторинга и в некоторых случаях даже управления ИБП — все они основаны на трех основных методах.

    В первом случае устройство подключается напрямую через интерфейс RS-232 (Com-порт) к консоли администратора. Дальность такого подключения не превышает 15 метров, но может быть увеличена с помощью конверторов RS-232/485 и RS-485/232 на концах провода, связывающего ИБП с консолью администратора. Такой способ обеспечивает низкую скорость обмена информацией и пригоден лишь для топологии «точка — точка».

    Второй способ предполагает использование SNMP-адаптера — встроенной или внешней интерфейсной карты, позволяющей из любой точки локальной сети получить информацию об основных параметрах ИБП. В принципе, для доступа к ИБП через SNMP достаточно веб-браузера. Однако для большего комфорта производители оснащают свои системы более развитым графическим интерфейсом, обеспечивающим функции мониторинга и корректного завершения работы. На базе SNMP-протокола функционируют все основные системы мониторинга и управления ИБП, поставляемые штатно или опционально вместе с ИБП.

    Стандартные SNMP-адаптеры поддерживают подключение нескольких аналоговых или пороговых устройств — датчик температуры, движения, открытия двери и проч. Интеграция таких устройств в общую систему мониторинга крупного объекта (например, дата-центра) позволяет охватить огромное количество точек наблюдения и отразить эту информацию на экране диспетчера.

    Большое удобство предоставляет метод эксплуатационного удаленного контроля T.SERVICE, позволяющий отследить работу оборудования посредством телефонной линии (через модем GSM) или через Интернет (с помощью интерфейса Net Vision путем рассылки e-mail на электронный адрес потребителя). T.SERVICE обеспечивает диагностирование оборудования в режиме реального времени в течение 24 часов в сутки 365 дней в году. ИБП автоматически отправляет в центр технического обслуживания регулярные отчеты или отчеты при обнаружении неисправности. В зависимости от контролируемых параметров могут отправляться уведомления о неправильной эксплуатации (с пользователем связывается опытный специалист и рекомендует выполнить простые операции для предотвращения ухудшения рабочих характеристик оборудования) или о наличии отказа (пользователь информируется о состоянии устройства, а на место установки немедленно отправляется технический специалист).

    Профессиональное мнение

    Наталья Маркина, коммерческий директор представительства компании SOCOMEC

    Управляющее ПО фирмы SOCOMEC легко интегрируется в общий контур управления инженерной инфраструктурой ЦОД посредством разнообразных интерфейсов передачи данных ИБП. Установленное в аппаратной или ЦОД оборудование SOCOMEC может дистанционно обмениваться информацией о своих рабочих параметрах с системами централизованного управления и компьютерными сетями посредством сухих контактов, последовательных портов RS232, RS422, RS485, а также через интерфейс MODBUS TCP и GSS.

    Интерфейс GSS предназначен для коммуникации с генераторными установками и включает в себя 4 входа (внешние контакты) и 1 выход (60 В). Это позволяет программировать особые процедуры управления, Global Supply System, которые обеспечивают полную совместимость ИБП с генераторными установками.

    У компании Socomec имеется широкий выбор интерфейсов и коммуникационного программного обеспечения для установки диалога между ИБП и удаленными системами мониторинга промышленного и компьютерного оборудования. Такие опции связи, как панель дистанционного управления, интерфейс ADC (реконфигурируемые сухие контакты), обеспечивающий ввод и вывод данных при помощи сигналов сухих контактов, интерфейсы последовательной передачи данных RS232, RS422, RS485 по протоколам JBUS/MODBUS, PROFIBUS или DEVICENET, MODBUS TCP (JBUS/MODBUS-туннелирование), интерфейс NET VISION для локальной сети Ethernet, программное обеспечение TOP VISION для выполнения мониторинга с помощью рабочей станции Windows XP PRO — все это позволяет контролировать работу ИБП удобным для пользователя способом.

    Весь контроль управления ИБП, ДГУ, контроль окружающей среды сводится в единый диспетчерский пункт посредством протоколов JBUS/MODBUS.
     

    Индустриальный подход

    Третий метод основан на использовании высокоскоростной индустриальной интерфейсной шины: CANBus, JBus, MODBus, PROFIBus и проч. Некоторые модели ИБП поддерживают разновидность универсального smart-слота для установки как карточек SNMP, так и интерфейсной шины. Система мониторинга на базе индустриальной шины может быть интегрирована в уже существующую промышленную SCADA-систему контроля и получения данных либо создана как заказное решение на базе многофункциональных стандартных контроллеров с выходом на шину. Промышленная шина через шлюзы передает информацию на удаленный диспетчерский пункт или в систему управления зданием (Building Management System, BMS). В эту систему могут быть интегрированы и контроллеры, управляющие ИБП.

    Универсальные SCADA-системы поддерживают датчики и контроллеры широкого перечня производителей, но они недешевы и к тому же неудобны для внесения изменений. Но если подобная система уже функционирует на объекте, то интеграция в нее дополнительных ИБП не представляет труда.

    Сергей Ермаков, технический директор компании Inelt, считает, что применение универсальных систем управления на базе промышленных контроллеров нецелесообразно, если используется для мониторинга только ИБП и ДГУ. Один из практичных подходов — создание заказной системы, с удобной для заказчика графической оболочкой и необходимым уровнем детализации — от карты местности до поэтажного плана и погружения в мнемосхему компонентов ИБП.

    — ИБП может передавать одинаковое количество информации о своем состоянии и по прямому соединению, и по SNMP, и по Bus-шине, — говорит Сергей Ермаков. — Применение того или иного метода зависит от конкретной задачи и бюджета. Создав первоначально систему UPS Look для мониторинга ИБП, мы интегрировали в нее систему мониторинга ДГУ на основе SNMP-протокола, после чего по желанию одного из заказчиков конвертировали эту систему на промышленную шину Jbus. Новое ПО JSLook для мониторинга неограниченного количества ИБП и ДГУ по протоколу JBus является полнофункциональным средством мониторинга всей системы электроснабжения объекта.

    Профессиональное мение

    Денис Андреев, руководитель департамента ИБП компании Landata

    Практически все ИБП Eaton позволяют использовать коммуникационную Web-SNMP плату Connect UPS и датчик EMP (Environmental Monitoring Probe). Такой комплект позволяет в числе прочего осуществлять мониторинг температуры, влажности и состояния пары «сухих» контактов, к которым можно подключить внешние датчики.

    Решение Eaton Environmental Rack Monitor представляет собой аналог такой связки, но с существенно более широким функционалом. Внешне эта система мониторинга температуры, влажности и состояния «сухих» контактов выполнена в виде компактного устройства, которое занимает минимум места в шкафу или в помещении.

    Благодаря наличию у Eaton Environmental Rack Monitor (ERM) двух выходов датчики температуры или влажности можно разместить в разных точках стойки или помещения. Поскольку каждый из двух датчиков имеет еще по два сухих контакта, с них дополнительно можно принимать сигналы от датчиков задымления, утечки и проч. В центре обработки данных такая недорогая система ERM, состоящая из неограниченного количества датчиков, может транслировать информацию по протоколу SNMP в HTML-страницу и позволяет, не приобретая специального ПО, получить сводную таблицу измеряемых величин через веб-браузер.

    Проблему дефицита пространства и высокой плотности размещения оборудования в серверных и ЦОД решают системы распределения питания линейки Eaton eDPU, которые можно установить как внутри стойки, так и на группу стоек.

    Все модели этой линейки представляют четыре семейства: системы базового исполнения, системы с индикацией потребляемого тока, с мониторингом (локальным и удаленным, по сети) и управляемые, с возможностью мониторинга и управления электропитанием вплоть до каждой розетки. С помощью этих устройств можно компактным способом увеличить количество розеток в одной стойке, обеспечить контроль уровня тока и напряжения критичной нагрузки.

    Контроль уровня потребляемой мощности может осуществляться с высокой степенью детализации, вплоть до сервера, подключенного к конкретной розетке. Это позволяет выяснить, какой сервер перегревается, где вышел из строя вентилятор, блок питания и т. д. Программным образом можно запустить сервер, подключенный к розетке ePDU. Интеграция системы контроля ePDU в платформу управления Eaton находится в процессе реализации.

    Требование объекта

    Как поясняет Олег Письменский, в критичных объектах, таких как ЦОД, можно условно выделить две области контроля и управления. Первая, Grey Space, — это собственно здание и соответствующая система его энергообеспечения и энергораспределения. Вторая, White Space, — непосредственно машинный зал с его системами.

    Выбор системы управления энергообеспечением ЦОД определяется типом объекта, требуемым функционалом системы управления и отведенным на эти цели бюджетом. В большинстве случаев кратковременная задержка между наступлением события и получением информации о нем системой мониторинга по SNMP-протоколу допустима. Тем не менее в целом ряде случаев, если характеристики объекта подразумевают непрерывность его функционирования, объект является комплексным и содержит большое количество элементов, требующих контроля и управления в реальном времени, ни одна стандартная система SNMP-мониторинга не обеспечит требуемого функционала. Для таких объектов применяют системы управления real-time, построенные на базе программно-аппаратных комплексов сбора данных, в том числе c функциями Softlogic.

    Системы диспетчеризации и управления крупными объектами реализуются SCADA-системами, широкий перечень которых сегодня присутствует на рынке; представлены они и в портфеле решений Schneider Electric. Тип SCADA-системы зависит от класса и размера объекта, от количества его элементов, требующих контроля и управления, от уровня надежности. Частный вид реализации SCADA — это BMS-система(Building Management System).

    «Дата-центры с объемом потребляемой мощности до 1,5 МВт и уровнем надежности Tier I, II и, с оговорками, даже Tier III, могут обслуживаться без дополнительной SCADA-системы, — говорит Олег Письменский. — На таких объектах целесообразно применять ISX Central — программно-аппаратный комплекс, использующий SNMP. Если же категория и мощность однозначно предполагают непрерывность управления, в таких случаях оправданна комбинация SNMP- и SCADA-системы. Например, для машинного зала (White Space) применяется ISX Central с возможными расширениями как Change & Capacity Manager, в комбинации со SCADA-системой, управляющей непосредственно объектом (Grey Space)».

    Профессиональное мнение

    Олег Письменский, директор департамента консалтинга APC by Schneider Electric в России и СНГ

    Подход APC by Schneider Electric к реализации полномасштабного полноуправляемого и надежного ЦОД изначально был основан на базисных принципах управления ИТ-инфраструктурой в рамках концепции ITIL/ITSM. И история развития системы управления инфраструктурой ЦОД ISX Manager, которая затем интегрировалась с программно-аппаратным комплексом NetBotz и трансформировалась в портал диспетчеризации ISX Central, — лучшее тому доказательство.

    Первым итогом поэтапного приближения к намеченной цели стало наращивание функций контроля параметров энергообеспечения. Затем в этот контур подключилась система управления кондиционированием, система контроля параметров окружающей среды. Очередным шагом стало измерение скорости воздуха, влажности, пыли, радиации, интеграция сигналов от камер аудио- и видеонаблюдения, системы управления блоками розеток, завершения работы сервера и т. д.

    Эта система не может и не должна отвечать абсолютно всем принципам ITSM, потому что не все они касаются существа поставленной задачи. Но как только в отношении политик и некоторых тактик управления емкостью и изменениями в ЦОД потребовался соответствующий инструментарий — это нашло отражение в расширении функционала ISX Central, который в настоящее время реализуют ПО APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager. С появлением этих двух решений, интегрированных в систему управления реальным объектом, АРС предоставляет возможность службе эксплуатации оптимально планировать изменения количественного и качественного состава оборудования машинного зала — как на ежедневном оперативном уровне, так и на уровне стратегических задач массовых будущих изменений.

    Решение APC by Schneider Electric Capacity обеспечивает автоматизированную обработку информации о свободных ресурсах инженерной инфраструктуры, реальном потреблении мощности и пространстве в стойках. Обращаясь к серверу ISX Central, системы APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager оценивают степень загрузки ИБП и систем охлаждения InRow, прогнозируют воздействие предполагаемых изменений и предлагают оптимальное место для установки нового или перестановки имеющегося оборудования. Новые решения позволяют, выявив последствия от предполагаемых изменений, правильно спланировать замену оборудования в ЦОД.

    Переход от частного к общему может потребовать интеграции ISX Central в такие, например, порталы управления, как Tivoli или Open View. Возможны и другие сценарии, когда ISX Central вписывается и в SCADA–систему. В этом случае ISX Central выполняет роль диспетчерской настройки, функционал которой распространяется на серверную комнату, но не охватывает целиком периметр объекта.

    Случай из практики

    Решение задачи управления энергообеспечением ЦОД иногда вступает в противоречие с правилами устройств электроустановок (ПУЭ). Может оказаться, что в соответствии с ПУЭ в ряде случаев (например, при компоновке щитов ВРУ) необходимо обеспечить механические блокировки. Однако далеко не всегда это удается сделать. Поэтому такая задача часто требует нетривиального решения.

    — В одном из проектов, — вспоминает Алексей Сарыгин, — где система управления включала большое количество точек со взаимными пересечениями блокировок, требовалось не допустить снижения общей надежности системы. В этом случае мы пришли к осознанному компромиссу, сделали систему полуавтоматической. Там, где это было возможно, присутствовали механические блокировки, за пультом дежурной смены были оставлены функции мониторинга и анализа, куда сводились все данные о положении всех автоматов. Но исполнительную часть вывели на отдельную панель управления уже внутри ВРУ, где были расположены подробные пользовательские инструкции по оперативному переключению. Таким образом мы избавились от излишней автоматизации, но постарались минимизировать потери в надежности и защититься от ошибок персонала.

    [ http://www.computerra.ru/cio/old/products/infrastructure/421312/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > управление электропитанием

  • 16 точка стыковки

    (механизм OLE, состоящий из объекта, инициирующего интерфейс, и объекта, реализующего функции интерфейса) connection point

    Русско-английский словарь по вычислительной технике и программированию > точка стыковки

  • 17 компонентная объектная модель

    1. Component Object Model
    2. COM

     

    компонентная объектная модель
    модель COM

    1. Разработанная компанией Microsoft объектная архитектурная модель. Первоначальный ее вариант был реализован в рамках технологии OLE версии 1 и не имел такого универсального характера, который эта модель приобрела позднее - в версии OLE2. Модель COM предназначена для обеспечения интероперабельности и повторного использования компонентов-объектов на платформе Windows. Тем самым разработчики имеют возможность конструировать объекты из компонентов, созданных на различных языках программирования и взаимодействующих через COM. Однако важное ограничение состоит в том, что двоичный код взаимодействующих систем должен иметь формат, определенный Microsoft. Архитектура COM построена по принципу "клиент-сервер". Объекты-клиенты могут обращаться за услугами к COM-объектам, т.е. к объектам, удовлетворяющим требованиям COM. Услуги, удовлетворяемые COM-объектом, реализованы методами этого объекта и определяются его интерфейсами. COM-объект может обладать несколькими интерфейсами, каждый из которых определяет некоторую группу его методов. Для описания интерфейсов в COM используется язык определения интерфейсов - Microsoft Interface Definition Language (Microsoft IDL), представляющий собой расширение DCE IDL. Доступ клиента к услугам COM-объекта осуществляется через посредство сервера. При этом предусматривается несколько способов взаимодействия клиента и сервера - исполнение их в одном и том же процессе, исполнение в разных процессах, но на одном компьютере, исполнение сервера на удаленном компьютере. Среда COM имеет интерфейс прикладного программирования (API). Благодаря этому приложения могут взаимодействовать с ней. В настоящее время разработаны и реализованы спецификации распределенной среды COM, названной Distributed Component Object Model (DCOM).
    2. Программная реализация среды для взаимодействия компонентов, разработанных компанией Microsoft на основе спецификации модели COM (см. п. 1). [30].
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > компонентная объектная модель

  • 18 система телевизионного наблюдения

    1. CCTV Surveillance System

     

    система телевизионного наблюдения
    СТН
    Система телевизионного наблюдения или замкнутая система телевизионного наблюдения (в отличие от вещательного и кабельного вещательного телевидения) - одна из важнейших составляющих интегрированного комплекса систем и средств физической защиты. Одной из главных функций интегрированного комплекса средств и систем физической защиты объекта (ИК СФЗ) является необходимость получения на пункте управления достоверной информации об обстановке, складывающейся на участках контроля, для принятия адекватного решения по предотвращению возникающей нерегламентированной ситуации и ликвидации возможных последствий. Для получения требуемого состава информации, характеризующей обстановку, складывающуюся на участках контроля, и позволяющей органам управления принять адекватное решение, в составе ИК СФЗ объекта должна быть включена система телевизионного наблюдения (СТН). Как функциональная система, СТН является логически завершенным, технически сложным изделием. СТН обеспечивает обработку видеоинформации, ее регистрацию, хранение и воспроизведение, обработку сигналов тревоги, поступающих от других функциональных систем комплекса. СТН является функционально законченным изделием, которое взаимодействует в совокупности с другими системами комплекса, а также может функционировать автономно вне зависимости от других систем. Интегрированная СТН реализуется, в общем случае, гармоничным взаимодействием интеллектуальных уровней управления: (1) уровень систем - графический пользовательский интерфейс и сервер базы данных; (2) уровень подсистем - матрицы, видеорегистраторы; (3) уровень локальных процессоров - локальные видеорегистраторы, приемники телеметрии. Базовыми компонентами СТН являются: ТВ камеры, объективы; ТВ мониторы; поворотные устройства; осветители.
    [ http://datasheet.do.am/forum/22-4-2]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > система телевизионного наблюдения

  • 19 закрытый метод

    Programming: private method (в ООП - метод объекта, реализация которого неизвестна, - он доступен только через интерфейс)

    Универсальный русско-английский словарь > закрытый метод

  • 20 система контроля и управления доступом

    1. ACS
    2. access control system

     

    система контроля и управления доступом
    Совокупность совместно действующих технических средств (контроля и управления), предназначенных для контроля и управления доступом и обладающих технической, информационной, программной и эксплуатационной совместимостью.
    [РД 25.03.001-2002] 

    система контроля доступа
    система управления доступом
    СКД

    Одна из важнейших составляющих интегрированного комплекса систем и средств физической защиты. Системой контроля доступа называется совокупность программно-аппаратных средств и организационных мероприятий, с помощью которых решается задача контроля и управления посещением отдельных помещений, а также оперативный контроль персонала и времени его нахождения на территории объекта.
    Интегрированная СКД реализуется, в общем случае, гармоничным взаимодействием интеллектуальных уровней управления:
    (1) уровень систем - графический пользовательский интерфейс и сервер базы данных;
    (2) уровень подсистем - главный контроллер (мультиплексор);
    (3) уровень локальных процессоров - локальные контроллеры, охранные панели.
    Базовыми компонентами системы контроля доступа, управляемы тремя уровнями управления, являются: считыватели и идентификаторы, исполнительные устройства контроля доступа (турникеты, барьеры, замки, шлюзовые кабины, шлагбаумы, и т.п.), специализированные обнаружители (обнаружители металлов, обнаружители ядерных материалов, обнаружители взрывчатых веществ).
    [ http://datasheet.do.am/forum/22-4-1]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > система контроля и управления доступом

См. также в других словарях:

  • Интерфейс (ООП) — Интерфейс (от лат. inter  между и лат. face  поверхность)  это семантическая и синтаксическая конструкция в коде программы, используемая для специфицирования услуг, предоставляемых классом или компонентом. Интерфейс определяет границу… …   Википедия

  • интерфейс — 01.04.10 интерфейс [ interface]: Совместно используемая граница между двумя функциональными единицами, определяемая различными функциональными характеристиками, параметрами физического соединения, параметрами взаимосвязи при обмене сигналами, а… …   Словарь-справочник терминов нормативно-технической документации

  • Интерфейс (объектно-ориентированное программирование) — У этого термина существуют и другие значения, см. Интерфейс (значения). Интерфейс (от лат. inter  «между», и face  «поверхность»)  семантическая и синтаксическая конструкция в коде программы, используемая для специфицирования… …   Википедия

  • Интерфейс (вычислительная техника) — Интерфейс (от англ. interface  поверхность раздела, перегородка)  совокупность средств и методов взаимодействия между элементами системы. В зависимости от контекста, понятие применимо как к отдельному элементу (интерфейс элемента), так и к… …   Википедия

  • Интерфейс (информатика) — Интерфейс (от англ. interface  поверхность раздела, перегородка)  совокупность средств и методов взаимодействия между элементами системы. В зависимости от контекста, понятие применимо как к отдельному элементу (интерфейс элемента), так и к… …   Википедия

  • Интерфейс (компьютеры) — Интерфейс (от англ. interface  поверхность раздела, перегородка)  совокупность средств и методов взаимодействия между элементами системы. В зависимости от контекста, понятие применимо как к отдельному элементу (интерфейс элемента), так и к… …   Википедия

  • Интерфейс (программирование) — Интерфейс (от англ. interface  поверхность раздела, перегородка)  совокупность средств и методов взаимодействия между элементами системы. В зависимости от контекста, понятие применимо как к отдельному элементу (интерфейс элемента), так и к… …   Википедия

  • Интерфейс системный — Интерфейс (от англ. interface  поверхность раздела, перегородка)  совокупность средств и методов взаимодействия между элементами системы. В зависимости от контекста, понятие применимо как к отдельному элементу (интерфейс элемента), так и к… …   Википедия

  • Интерфейс — У этого термина существуют и другие значения, см. Интерфейс (значения). Интерфейс (англ. interface  сопряжение, поверхность раздела, перегородка)  граница раздела двух систем, устройств или программ, определённая их… …   Википедия

  • Класс объекта — Класс, наряду с понятием «объект», является важным понятием объектно ориентированного подхода в программировании (хотя существуют и бесклассовые объектно ориентированные языки, например, Прототипное программирование). Под классом подразумевается… …   Википедия

  • абстрактный интерфейс службы связи — Виртуальный интерфейс с интеллектуальным электронным устройством, предоставляющий логическим устройствам, логическим узлам, данным, атрибутам данных и услугам связи абстрактные методы информационного моделирования независимо от фактически… …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»